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Abstract
Supersonic particle deposition (also known as cold spray) is a surface coating
process whereby metal particles are accelerated to supersonic speeds while
entrained in nozzle gas flow and are subsequently deposited by impact onto
a surface. Particle velocity is critical for optimal deposition efficiency and
coating quality, and several parameters, including gas conditions, particle
characteristics and nozzle geometry affect particle velocity. This study
investigates the relationship between particle velocity and coating quality and
investigates how nozzle design influences particle velocity. Performance is
described through modelling and verified by direct velocity measurements.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

AQ1

The US Army utilizes metal coatings in many of its weapons systems for the strengthening
or protection of vulnerable substrates. The quality of these coatings is characterized by the
density of the metal coating and its ability to adhere to the substrate. Extremely dense and
adherent metal coatings can be applied to surfaces by impacting metal particles onto the surface
at supersonic velocities. This process, called Supersonic Particle Deposition (SPD), is carried
out at the US Army Research Laboratory (ARL) in Aberdeen, MD.

Cold spray as a coating technology was initially developed in the mid-1980s at the Institute
for Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of
Science in Novosibirsk [1, 2]. The Russian scientists successfully deposited a wide range of
pure metals, metallic alloys, polymers and composites onto a variety of substrate materials,
and they demonstrated that very high coating deposition rates are attainable using the cold
spray process. Currently, a variety of cold spray research is being conducted at institutions in
the US, Russia, Germany and Japan [3].

The ARL system accelerates micron-sized particles to high velocities by entraining the
particles in the flow of a supersonic nozzle. This system is shown in figure 1. High velocity
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Figure 1. SPD operating principle.

is necessary for optimal particle deposition and density, and several parameters, including gas
conditions, particle characteristics and nozzle geometry, affect particle velocity. This work
examines the effects of these parameters on coating characteristics.

2. Procedure

Coating by SPD takes place in two stages—the deposition of particles on the bare substrate and
the deposition of new particles over previously deposited particles. Both processes are strongly
dependent on particle velocity and substrate and particle material properties. The effects of
these parameters on the particle–substrate interface (bond strength) and particle-on-particle
buildup (deposition efficiency (DE)) of SPD-deposited coatings can be effectively modelled
by means of empirical impact study results and conventional nozzle flow relationships.

2.1. Particle–substrate Interface

The bond strength between a metal coating and its substrate is principally determined by the
degree of intimate contact and interlocking sites between the two materials. These phenomena
are controlled by the particle velocity and the hardness of the substrate, which together
determine the cratering that results from the impact. An empirical projectile penetration law
by Eichelberger and Gehring [4] relates the crater volume, m3, produced by micrometeoroid
impact on spacecraft. This is given by equation (1):

Volume = (4 × 10−5)E

B
, (1)

where E is the particle kinetic energy, and B is the substrate Brinell hardness number. It was
shown [5] that this equation yielded accurate results for velocities below 10 km s−1, the range
of SPD particles.

In order to make use of equation (1) substitute 1/2(4/3πr3ρp)V
2

p for E, where ρp is the
particle density, r is the particle radius and Vp is the particle velocity. The crater volume is
assumed to be the particle face area (πr2) times the penetration depth, L. Thus equation (1)
becomes:

Volume = (πr2)L = (4 × 10−5)(1/2)(ρp4/3πr3)V 2
p

B
. (2)
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Figure 2. Copper–aluminium interface.

The penetration depth, L, in m is then given by the following:

L = (4 × 10−5)

(
2ρpr

3

) (
V 2

p

B

)
. (3)

If it is assumed that the onset of good interfacial mixing occurs when the particle is completely
embedded at L = 2r , the onset velocity is found to be

Vp =
[
(7.5 × 104)

(
B

ρp

)]0.5

. (4)

Equation (4) gives a simple, empirical method to estimate the attainment of interface
mixing via particle penetration. This equation, along with the ability to calculate particle
velocity (described in 2.2), is used to determine the compatibility of various particles and
substrates. For example, equation (4) gives an onset velocity of 500 m s−1 for copper particles
impacting 6061-T6511 aluminium. Under these conditions the interface shown by figure 2
results. Mixing between the copper and aluminium is clearly obtained with a measured bond
strength exceeding 10 000 psi.

2.2. Deposition efficiency

The modelling of DE, or particles building up over previously deposited particles, can be
broken down into three tasks.

1. The gas flow and temperature in the nozzle are calculated by means of isentropic
(frictionless) gas dynamic principles.

2. Drag and heat transfer coefficients from solid rocket analyses are used to iteratively
calculate particle velocity and temperature through the nozzle.

3. An empirical relationship between particle velocity and particle material characteristics
is used to calculate the DE or the percentage of incoming particles that adhere and form
the deposition.
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Figure 3. Nozzle geometry.

2.2.1. Gas flow. The gas flow model uses isentropic relationships and linear nozzle geometry.
The assumptions for the calculation are as follows.

• The gas obeys the perfect gas law.

• There is no friction impeding the gas flow.

• The gas flow is adiabatic, i.e. no heat loss occurs to the surroundings.

• Steady-state conditions exist.

• Expansion of the gas occurs in a uniform manner without shock or discontinuities.

• Flow through the nozzle is one-dimensional, hence the flow velocity, pressure and density
are uniform across any cross section normal to the nozzle axis.

• Particles do not influence gas conditions.

Under these conditions, the relationship [6] between nozzle area, A, and Mach number is given
by equation (5), where γ is the ratio of gas specific heats (Cp/Cv).

A1

A2
= M2

M1

{
1 +

[
(γ − 1) /2

]
M2

1

1 +
[
(γ − 1) /2

]
M2

2

}(γ +1)/2(γ−1)

. (5)

The simple, conical, nozzle geometry shown in figure 3 is assumed. A small initial subsonic
Mach number and initial (stagnation) values of pressure and temperature are assigned at the
converging section of the nozzle. The Mach number is then iteratively increased while gas
characteristics are calculated for each point through the isentropic relationships of equations (6)
and (7). Linear progression along the nozzle axis is calculated from the area change given by
equation (5) and the assumed nozzle geometry.

T0

T
= 1 +

(
γ − 1

2

)
M2. (6)

p0

p
=

[
1 +

(
γ − 1

2

)
M2

]γ /(γ−1)

. (7)

Supersonic flow is obtained when the nozzle is choked, where the ratio of the exit pressure,
pE, to chamber pressure, p0, satisfies equation (8). This condition will be satisfied in all
subsequent calculations.

pE

p0
<

[
1 − {(γ − 1) /2}

1 + {(γ − 1) /2}
]γ /(γ−1)

. (8)
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2.2.2. Particle motion. Once the gas conditions and velocity are characterized within the
nozzle, particle velocity is iteratively calculated down the length of the nozzle through the use
of a solid rocket nozzle particle drag relationship. This relationship predicts the accelerating
force on the particle.

m
dVp

dt
= CD(π/8)ρgd2(Vg − Vp)

2, (9)

where Vp and Vg are particle and gas velocities, m is particle mass, ρg is gas density and d is
particle diameter.

Carlson and Hoglund [7] correct the simple Stokes drag law relationship for inertial,
compressibility and rarefaction effects through the empirical relationship of equation (10).

CD = 24

Re

[
(1 + 0.15R0.687

e )(1 + e−0.427/M4.63
p +3.0/R0.88

e )

1 + (Mp/Re)(3.82 + 1.28e−1.25Re/Mp)

]
. (10)

Mp is the Mach number of the gas–particle velocity difference and Re is the gas–particle
Reynolds number.

Particle temperature is subsequently calculated through the application of the gas–particle
heat transfer relationship for forced convection, given by equation (11).

cp
dTp

dt
=

(
Nuk

d

) (
Ap

m

)
(Tg − Tp), (11)

where cp is the particle heat capacity, Tp and Tg are the particle and gas temperatures, Nu is
the Nusselt number, k is the gas conductivity and Ap is the particle surface area.

Ranz and Marshall [8] show that the Nusselt number for this situation is given by

Nu = 2.0 + Re0.5Pr0.33 (12)

where Pr is the Prandtl number.

2.2.3. Apply empirical relationship. The ability to predict DE allows one to choose gas and
particle parameters that will yield good DE and reduce operating time and wasted powder.
An empirical relationship between particle parameters and the critical velocity needed for a
particle to stick to a previously deposited layer and the gasdynamic velocity model shown
previously is used to predict DE. The empirical relationship for the particle critical velocity is
given by Assadi et al [9] as

Critical velocity (m s−1) = 667 − 14ρp + 0.08Tm + 0.1σµ − 0.4Te, (13)

where ρp = particle density, Tm = particle melting point, σµ = particle UTS and Te =
particle exit temperature.

The critical velocity as determined by equation (13) and the particle velocities as calculated
in section 2 above then allow an identification of the particle size that can achieve this
velocity. The powders employed in SPD are not of uniform diameter but are characterized by
a distribution of particle diameters. The particle size distribution is defined as normal. DE
is thus calculated as the percentage of particles having a smaller diameter (and thus having a
higher velocity than) than the particle diameter achieving the critical velocity. Equation (14)
defines the mass percentage of particles having a smaller diameter than the particle diameter,
d, which is the DE. It is a normal relationship where MMD is the mass mean diameter of the
feed powder and σ is the geometric standard deviation of the distribution.

DE =
(

100

2

) [
1 + erf

(
d − MMD

σ
√

2

)]
. (14)
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Figure 4. Gas–particle conditions during nozzle traverse.

3. Calculations and discussion

The gas stagnation (chamber) pressure and temperature are 400 psi and 673 K, unless otherwise
noted. The initial particle temperature is 293 K. Nozzle length affects particle velocity through
the duration of acceleration and is a variable in some calculations. The typical length for SPD
equipment is 10–30 cm. Nozzle diameter does not directly enter the calculations, except in the
form of area ratios. The typical throat diameter in SPD equipment is 2 mm.

All calculations are carried out for spherical copper particles. The mass ratio of particles
to gas in typical SPD operation is less than 0.05; therefore, it is assumed that the presence of
particles does not affect gas flow and that no particle-to-particle contact occurs. An individual
calculation applies to a single particle of given diameter. Particle size effects are determined by
multiple calculations for various particle diameters. Gross DE is then based on the particle size
that achieves the critical velocity given by equation (13) and on the percentage smaller than that
size given by the powder size distribution given by equation (14). The particle size distribution
assumed to be normal with a standard deviation of 4, which describes the powder used.

The SPD system can utilize either nitrogen or helium gas. Helium gas yields higher
gas and particle velocities due to its lower molecular weight. The type of gas used for each
calculation will be noted. The independent variables are gas type, particle MMD and nozzle
geometry. The dependent variables that are calculated are particle exit velocity, temperature
and DE.

Figure 4 shows a gas–particle calculation for 20 µm copper particles. Nitrogen gas,
initially at 400 psi and 673 K, is the accelerant. The gas converts temperature and pressure into
velocity as it is expanded in the converging–diverging nozzle. The gas attains Mach 1 at the
throat and is about Mach 3 at the nozzle exit, where the area ratio of exit to throat is 4. Particle
velocity is related to the gas velocity through the drag relationship, equation (9). A gas exit
velocity of 950 m s−1 and a particle exit velocity of 500 m s−1 are seen in this case. Particle
temperature is related to the gas temperature through convective heat transfer, equation (11).
The particles are seen to heat up when they are cooler than the gas and begin to cool down
after the gas has expanded to temperatures lower than that of the particles. Particles smaller
than 20 µm would more closely follow the gas velocity and temperature and would exit with
a higher velocity and lower temperature.
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Figure 5. Particle conditions at the nozzle exit.

Figure 6. DE versus diameter.

Particle exit velocity and temperature are shown as functions of particle diameter in
figure 5, for nitrogen and helium driving gases. A 9 cm long nozzle with an area ratio (exit
area divided by throat area) of 4 is used for this calculation. Particle exit velocity decreases
as particle diameter increases because the ratio of surface area to mass, and hence, the ratio
of drag to mass (acceleration) decreases. Significantly higher particle velocity is achieved
when using helium gas because much higher gas velocities are achieved for helium expansion
in a nozzle. Particle velocity in helium decreases from 1000 to 500 m s−1 when the particle
size is increased from 10 to 40 µm. Particle exit temperatures are somewhat lower for helium
acceleration because helium expansion temperatures are lower than those for nitrogen. Particle
temperature is relatively unchanged from that of injection temperature for larger particles
because of the smaller surface area to mass ratio, (Ap/m) of equation (11).

Figure 6 results when the particle velocity and temperature values of figure 5 are applied
to equations (13) and (14). Based on the particle temperature, density, melting point and
UTS, a critical velocity can be calculated, for which all particles exceeding that velocity will
deposit. For a given set of nozzle and gas parameters, calculations such as those producing AQ2

figure 5 will identify the particle diameter that yields the critical exit velocity. A normal
particle size distribution with a standard deviation of 4 then gives the percentage of particles
that are smaller than the diameter yielding the critical velocity. Since these smaller particles
have larger velocities, this percentage is the DE, or the percentage of particles that deposit.
If, for example, the critical particle diameter is equal to the MMD of the powder distribution,
then DE is 50%. The importance of particle diameter (hence particle velocity) is clear for
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Figure 7. Experimental and theoretical copper deposition.

both nitrogen and helium accelerating gases. Figure 6 demonstrates the extreme importance
of particle diameter, where DE can change by two orders of magnitude with a two-fold change
in particle diameter.

4. Comparison with experiment

4.1. Deposition efficiency

Gilmore et al [10] measured the DE of copper particles impacting an aluminium substrate as
a function of mean particle velocity. Copper particles of MMD of 19 µm and helium gas were
employed. Particle velocity was varied by changing stagnation pressure and temperature and
was measured with a laser two-focus velocimeter. DE was calculated from the target weight
gain versus powder usage. The experimental results are shown in figure 6.

Calculated DEs, using the same operational parameter values, are also shown in figure 7.
The calculation utilized equations (5)–(12) for particle velocity and temperature versus
diameter. Equations (13) and (14) were subsequently used to predict DE. The model correlates
well at low and high particle velocities, and the model approaches 100% DE in an asymptotic
fashion, as would be expected.

4.2. Nozzle length

Nozzle length obviously affects particle exit velocity, since this parameter controls the time
during which the particles are acted upon by the gas. The exit gas velocity is not affected by the
nozzle length as long as area ratio remains constant. On the other hand, longer nozzles yield
higher particle velocities because the particles undergo acceleration for a longer period of time.
Figure 8 shows how the velocity of 20 µm particles increases with increasing nozzle length,
for 12.25 and 4.0 area ratios (A/A*). The figure shows both calculated and measured values.
Although only three experimental points are available, they are included in the figure to show
correlation at short nozzle lengths. Future work will include the experimental performance
of longer nozzles. The advantage shifts from a 4.0 area ratio for shorter nozzles to 12.25 for
longer nozzles. This occurs because longer residence times favour the lower gas density of the
higher area ratio nozzle more than higher densities are favoured. This effect is clearly minor
when compared with the magnitude of increased particle velocity brought about by longer
nozzles.
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Figure 8. Longer nozzles yield higher particle velocities.

Figure 9. Measured particle velocity 25 mm downstream of the nozzle.

The experimental particle velocities shown in figure 8 were measured by means of a
TECNAR DPV-2000, dual-slit, laser-illuminated optical sensor. The measurement for the
9 cm nozzle is shown in figure 9. This velocity distribution was measured 25 cm below the
nozzle exit. The outline of the nozzle exit is superimposed. Since individual particle diameters
vary, particle velocities also vary. The given velocity at each point is a time average of the
individual particles traversing that point. The major particle flux (particles/second/area) is
contained within the central core below the nozzle. The higher velocities seen outside the core
area are representative of relatively few particles.

5. Conclusions

Particle deposition and consolidation by SPD has been modeled through the application of
empirical particle–spacecraft collision relationships, the use of conventional rocket nozzle
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flow equations and the application of an empirical materials-driven impact relationship. It
was shown that the velocity onset of particle–substrate interface mixing can be predicted by
simple particle and substrate material characteristics originally developed for the prediction of
micrometeor impact on spacecraft. It was also shown that particle velocity and temperature
can be predicted at the nozzle exit and that these conditions can then be used to predict the
DE of the process. High particle velocity favours high DE. Modelling efforts showed that
higher velocity is obtained from smaller diameter particles and longer nozzles. Experimental
results verified particle velocity and nozzle length effects and showed good correlation with
calculations. These observations have been qualitatively known in the SPD community but
quantitative guidelines were not well established. The modelling effort presented here gives the
SPD user the ability to anticipate coating results based upon the spray parameters and material
characteristics, thus eliminating trial and error attempts at creating acceptable coatings.

c© US Government
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QUERIES

Page 1
AQ1
Please be aware that the colour figures in this article will only appear in colour in the web version.
If you require colour in the printed journal and have not previously arranged it, please contact
the production editor now. As information would be lost in greyscale, we will print figure 9 in
colour free of charge and could you please supply replacement figures for figures 4, 5, 6 and 8
as the lines are not understandable in greyscale.

Page 7
AQ2
The sentence beginning ‘For a given set of nozzle and gas parameters ’ is ambiguous. Please
clarify.
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